石油燃料の燃焼を向上させ CO2・燃料使用量を削減

固体水素 水素化マグネシウム含有 石油燃料添加剤

ECOMAX® (エコマックス)

製品紹介

燃料添加剤 ECOMAX®

- 燃焼を促進させ燃料使用量・CO₂排出量を削減
- ガソリン・軽油・灯油・A重油・C重油に対応
- 国内580社の企業で採用、海外でも使用中
- 添加量が少量な為、費用対効果が高い
- 設備投資不要(給油時添加のみ)
- ※【容量】200ml・500ml・4L・18L・200L

ECOMAXの主要効果

- ・石油燃料使用の自動車・ボイラー・船舶・建設機器等で使用
- ・燃焼が促進することで、複数のメリットが得られる

企業の使用目的

- 設備投資不要で、燃料コストの削減
- 燃料使用量を削減する事でCO2の削減が出来、 排ガスを削減する事でもCO2の削減
- 燃焼が促進される事で、排ガスの総量及び・ 排ガスに含まれる有害物質を抑制
- 燃え残り(カーボンデポジット)の発生を 抑制させ、燃焼機器を清浄化

国内•海外使用状況

Being

原油高騰・環境問題により使用企業が増加

- ・ボイラー燃料で使用割合が多い(灯油・A重油)
- ・近年、建設機器や船舶燃料による使用が増加(軽油・A・C重油)

業種別使用割合

建設・製造・工場 (重油・灯油)

(重油・灯油)

主な使用企業例

■建設関係:船舶・重機

作業船・浚渫船・ダンプ・建設重機・クレーン・発電機

■工場関係:ボイラー

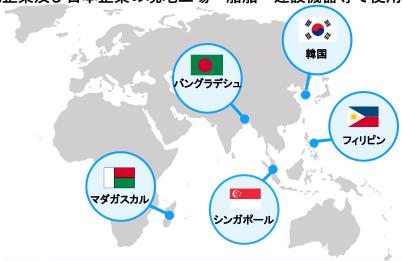
アルミニウム・段ボール・綿・ワックス・自動車部品・クリーニング

■宿泊関係:ボイラー

ホテル・旅館・リゾート施設・温浴施設

■運送関係:自動車

社用車・物流トラック・レッカー車



2020年より海外への出荷数が増加

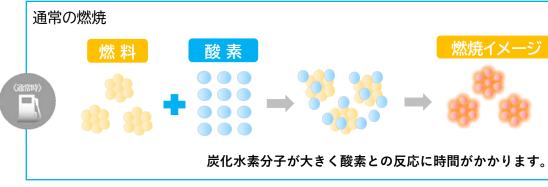
・現地企業及び日本企業の現地工場・船舶・建設機器等で使用

海外使用事例

- ■シンガポール:船舶
- ・船舶用C重油(VLSFO)で使用
- ■マダガスカル:作業船
- ・現地の港湾工事現場で使用
- ■バングラディッシュ:自動車
- ・現地のバス会社で使用
- 韓 国 :トラック・重機
- ・現地の運送会社・建設会社
- **■**フィリピン:ボイラー
- ・日本メーカの現地工場で使用

①燃料添加剤「ECOMAX」のメカニズム

・ECOMAX は石油分子を活性化させる為、ナノ技術・イオン化技術により製造


石油燃料に適量添加で燃料分子を活性化

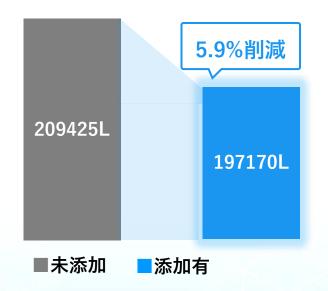
水素化マグネシウム含有で効果UP 燃焼時に酸素との反応を促進させ燃焼速度向上

水素化マグネシウム含有で効果UP 燃焼速度が向上する事で、熱効率を向上

燃費が向上し、 排ガスがクリーンに

②燃料が燃焼室に噴霧された時のイメージ図

ECOMAXを添加すると


ECOMAX 燃焼 【従来のECOMAX効果】 炭化水素分子が活性化され酸素との反応が促進し、熱効率が向上。 IBECOMAX 新ECOMAX 水素化マグネシウム含有 【従来の効果+水素化マグネシウム効果】

水素化マグネシウム(MgH2) の水素が発火の起点となり均一な燃焼を可能にし、 さらにMgが燃焼を促進し、熱効率が大きく向上します。

社外データ①: A重油船舶検証結果

燃焼が向上する事で、燃料使用量を削減

- ・A重油使用船舶で燃料消費量を改善
- ・同月比・同航路・同重量で検証
- ■燃料使用量の推移(L)

- ※2024年9月01~2025年2月27日計測データより算出
- ※詳細データは別紙参照
- ※10月時化時の記録は除く

ECOMAX 添加時

燃料消費量5.9%削減

燃料消費量比較検証

■船 舶:㈱トクヤマ海陸

■油 種:A重油

■期 間:2024年9月~2025年2月

■CO2削減量:33.2t

■燃料削減量:12,255L

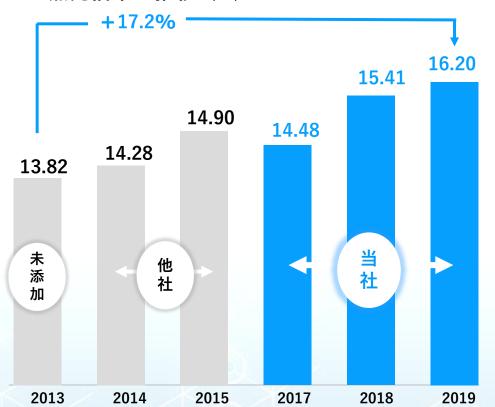
■㈱トクヤマ様 報告内容

株トクヤマ海陸の起用船舶 にてECOMAX VJ添加前後における 燃料消費量の比較検証を実施

〇対象月度: 2024年9月~2025年2月実績 (出航日ベース)

○対象データ: 過去のデータにて算出 (気象・海象・潮流の影響は含まない)

〇効果:燃料使用量削減: 5.9%削減 (10月実績の化時の記録は除く)



社外データ②:A重油ボイラー検証結果

燃焼が向上する事で、蒸発倍率が向上

- ・製造工場様により蒸発倍率の検証で効果を確認
- ■蒸発倍率の推移(%)

未添加時比較では、

蒸発倍率約 17.2 %向上

蒸発比較検証

■業 種:製造工場

■使用機器:ボイラー

■メーカー:(株)IHI

■未添加時期:2011~2013

■他社添加剤:2014~2015

■弊社添加剤:2017~2019

■製造工場様 報告内容

製造工場様のA重油ボイラー にてECOMAX添加前後における 蒸発倍率の比較検証を実施

〇対象月度: 2019年実績

〇対象データ: 過去データにて算出

〇効果:蒸発倍率削減: 17.2%削減

※2016年はECOMAXの使用が通年では無い為、本比較より除外

※添付資料 詳細② ECOMAXボイラー利用検証報告を参照

社外データ③:軽油エンジン計測結果

燃焼が向上する事で、排出ガスを削減

・燃焼を比較する為、添加前後の排気ガスの成分を検証

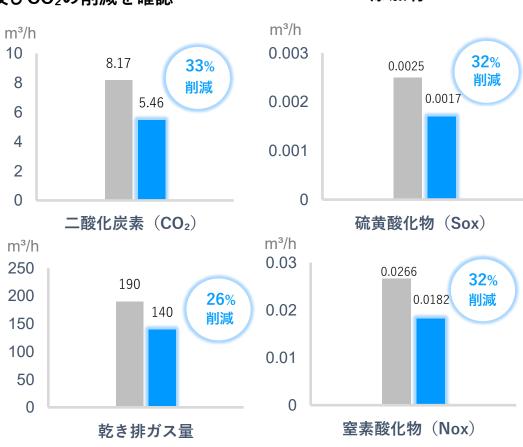
・排気ガス中に含まれる有害物質及びCO。の削減を確認

排ガス成分比較検証

■計測車両:日野 デュトロ(4t)

■計測燃料:軽油(出光)

■総排気量:5120cc


■年 式:2020年製造

■計 測:信濃公害研究所

■条 件:添加前後の 排出される各成分量を比較

※各算出方法は別紙へ記載 ※排がス組成(乾き排ガス量 ・CO₂) は.JISK0301 オルザット法により測定

■未添加

■添加有

■信濃公害研究所報告内容

ECOMAX添加前後の軽油トラックより 排出される排ガス成分の比較検証を実施。

- ○対象データ:未添加時・添加後数値を比較
- ※添加後約1000km走行後計測
- 〇効果:CO₂及び各有害物質の抑制を確認 (下記参照)

測定項目	添加無		添加有	増減率
ぱいじん量(PM)	0.19m³/h	•	0.14m³/h	-26% 🔻
硫黄酸化物量(Sox)	0.0025m³/h	•	0.0017m³/h	-32% 🖶
窒素酸化物量(Nox)	0.0266m³/h	•	0.0182m³/h	-32% 🔻
水分量	6.3%	•	6.5%	3%
排ガス温度	137°C	•	132°C	-4% 🖊
排出ガス流速	11.6m/h	٠	9.0m/h	-22% 🐥
乾き排ガス量	190m³/h	•	140m³/h	-26% 🞩

排出ガス組成	添加無	添加有	増減率
二酸化炭素量(co ₂)	8.17m³/h	▶ 5.46m³/h	-33% 🔻
酸素量(O ₂)	28.69m³/h	21.84m³/h	-24% 🚚
一酸化炭素量(co)	0.0m³/h	0.0m³/h	0%
窒素量(N ₂)	153.1m³/h	112.7m³/h	-26% 🐥

注)各項目の量(m³/h)=濃度(ppm)又は組成(%)×乾き排ガス量(m³/h)の計算式により算出 注)濃度・組成の記録は別紙に記載

排出ガス試験結果(WLTCモード): ディーゼル車

■財団法人 日本自動車検査協会にて、ECOMAX添加後の各種排ガス成分の比較検証を実施

①添加後のCO・NMHC・Nox・PMの数値が大幅に減少し、CO2の数値が増加した事から、エンジン内部における燃焼が大幅に向上した事が分かる。

②CO₂の増加に関しては、燃焼が向上した事が起因している。これは、走行時間を増加させECU[※]が向上した燃焼状態を学習し燃焼に合わせた調整をする事でCO 2 は減少する。

試験概要

■計測車両:トヨタ ハイエース (コミューター)

■計測方式:WLTCモード(走行距離15km)

■総走行距離: 126 km

■添加量:希釈率1/1000|

■計測日:2024年7月

■比較対象:メーカー公表数値

※添加直後計測

■計測結果

項目	メーカー 数値		添加後 数値	増減率
CO (一酸化炭素)	0.63 g/km	•	0.013g/km	- 97.9%
NMHC (非メタン炭化水素)	0.024 g/km	•	0.000g/km	- 100%
NOx (窒素酸化物)	0.15g/km	•	0.076g/km	- 49.3%
C O 2 (二酸化炭素)	254 g/km	I	262.8g/km	3.46%
P M (粒子状大気汚染物質)	0.007g/km		0.0012g/km	- 82.8%

※ECU:エンジン内部の空気量及び燃料量を調整するコンピューター

排出ガス試験結果(WLTCモード):ガソリン車

■財団法人 日本自動車検査協会にて、ECOMAX添加後の各種排ガス成分の比較検証を実施

①添加後のCO・NMHC・Noxの数値が大幅に減少した事から、エンジン内部における燃焼が大幅に向上した事が分かる。

②CO₂の増加に関しては、燃焼が向上した事が起因している。これは、走行時間を増加させECU[※]が向上した燃焼状態を学習し燃焼に合わせた調整をする事でCO 2 は減少する。 ※ECU: エンジン内部の空気量及び燃料量を調整するコンピューター

試験概要

■計測車両:ホンダ WR-V

■計測方式:WLTCモード(走行距離15km)

■総走行距離:161km ■添加量:希釈率1/1000 ■計測日:2024年8月

■比較対象:メーカー公表数値

※添加直後計測

■計測結果

項目	メーカー 数値	添加後 数値	増減率
CO(一酸化炭素)	1.15g/km	0.077g/km	- 93.3%
NMHC(非メタン炭化水素)	0.05g/km	0.011g/km	- 78.0%
NOx(窒素酸化物)	0.025g/km	0.003g/km	- 88.0%
CO2(二酸化炭素)	143.3g/km	162.1 g/km	11.5%
PM(粒子状大気汚染物質)	メーカー未公表		

試験概要

■計測車両:トヨタ ヴォクシー

■計測方式:WLTCモード(走行距離15km)

■総走行距離: 1 1 8 k m ■添加量:希釈率1/1000 ■計測日: 2024年 9 月

■比較対象:メーカー公表数値

※添加直後計測

項目	メーカー 数値	添加後 数値	増減率
CO(一酸化炭素)	1.15 g/km	0.103 g/km	- 91.0%
NMHC(非メタン炭化水素)	0.025 g/km	0.011 g/km	- 56.0%
NOx(窒素酸化物)	0.013g/km	0.001 g/km	- 92.3%
CO2(二酸化炭素)	101 g/km	138.9g/km	37.5%
P M (粒子状大気汚染物質)	メーカー	未公表	

安全性に関する情報

①燃料分析

・ボイラー、エンジンメーカーはJIS規格の燃料の使用を指定

燃料分析方法

■使用燃料:C重油・A重油・軽油・灯油

■添 加 量:1/1000

■添加方法:燃料分析会社にて攪拌1時間後計測

的:添加後の燃料がJISの基準数値内かを判断

添加した各燃料はJIS規格の基準数値内の為、安心してご利用 いただけます。詳細は、ECOMAXマニュアル参照。

②生産物賠償責任(PL)保険

・ECOMAXが原因での損害に対しては、以下の生産物賠償責任(PL)保険で補償

販売開始(2010年12月)より現在(2025年8月)まで事故・故障等は0件。 詳細は、保険会社発行のマニュアルをご確認ください。

③有害成分分析結果 ・株式会社トクヤマ 分析データ

【金属成分】

(結果) ・問題となるような物質は検出されなかった。

【有機成分】

(結果)・問題となるような物質は検出されなかった。 (別紙分析結果データ参照)

項目	単位	分析値
水分		< 30
Hg (HCI抽出)		<1
As(HCI抽出)	Ppm	<1
Cr(蒸発乾固+HC I溶解)		<1
Ni(蒸発乾固+HC I溶解)		<1
Mn(蒸発乾固+HCI溶解)		<1
Pb(蒸発乾固+HC 溶解)		<1

世界製品 燃料添加剤 ECOMAX® ラインナップ

ECOMAX VC 用途:C重油燃料使用機器

ECOMAX VI 用途:A重油燃料使用機器

ECOMAX VD 用途:軽油燃料使用機器

ECOMAX VT 用途:灯油燃料使用機器

ECOMAX Excellent 用途:ガソリン燃料使用機器

【全ての製品の規格】

量: 4 L(VCを除く) 18 L 200L

格: 販売会社にお問い合わせください。 い : 第4類 第二石油類 危険等級Ⅲ |消費期限: 1年(未開封)/5か月(開封後)

|保存方法: 高温下(50℃以上)、直射日光、強い電磁波の場所(高圧線付近)

を避けて保管してください。

添加剂使用量

※初回:1/1000 (タンク残量と給油量の両方に対して) 2回目給油以降: 1/2000 (給油量に対して)

添加率燃料量	1000分の1	2000分の1
100L	100ml	50ml
1KL	1L	500ml
10KL	10L	5L
50KL	50L	25L

製造元

株式会社Being(ビーイング) 会社名

設立 2010年(平成22年)

本社所在地 群馬県前橋市高井町1-27-14

伊藤 宗樹 代表取締役

資本金 10,000,000円

関連会社 ㈱ともいき

(あさひ自動車)

事業内容 石油系燃料添加剤

「ECOMAX® | 製造事業

共同開発企業

株式会社 トクヤマ 会社名

設立 1918年 (大正7年)

従業員数 5,734名 (2024年3月期)

(連結)

売上高 3,420億円 (2024年3月期)

市場区分 東京証券取引所 プライム市場

事業内容 化成品、セメント、電子材料、

ライフサイエンス、環境製品

の製造販売

販売会社

〒531-0041 大阪市北区天神橋7丁目12-6 グレーシィ天神橋ビル2号館604号室 サポート部 06-6882-5500 (平日10:00~17:00)